Active-space N-representability constraints for variational two-particle reduced density matrix calculations.

نویسندگان

  • Neil Shenvi
  • Artur F Izmaylov
چکیده

The ground-state energy of a system of fermions can be calculated by minimizing a linear functional of the two-particle reduced density matrix (2-RDM) if an accurate set of N-representability conditions is applied. In this Letter we introduce a class of linear N-representability conditions based on exact calculations on a reduced active space. Unlike wave-function-based approaches, the 2-RDM methodology allows us to combine information from calculations on different active spaces. By adding active-space constraints, we can iteratively improve our estimate for the ground-state energy. Applying our methodology to a 1D Hubbard model yields a significant improvement over traditional 2-positivity constraints with the same computational scaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational optimization of the two-electron reduced-density matrix under pure-state N-representability conditions.

The direct variational optimization of the ground-state two-electron reduced-density matrix (2-RDM) is typically performed under ensemble N-representability conditions. Accordingly, variationally obtained 2-RDMs for degenerate ground states may not represent a pure state. When considering only ground-state energetics, the ensemble nature of the 2-RDM is of little consequence. However, the use o...

متن کامل

Generalized Pauli constraints in reduced density matrix functional theory.

Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman's ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of...

متن کامل

Connecting N -representability to Weyl's Problem: the One Particle Density Matrix for N = 3 and R = 6

An analytic proof is given of the necessity of the Borland-Dennis conditions for 3-representability of a one particle density matrix with rank 6. This may shed some light on Klyachko’s recent use of Schubert calculus to find general conditions for N -representability.

متن کامل

The reduced density matrix method for electronic structure calculations and the role of three-index representability conditions.

The variational approach for electronic structure based on the two-body reduced density matrix is studied, incorporating two representability conditions beyond the previously used P, Q, and G conditions. The additional conditions (called T1 and T2 here) are implicit in the work of Erdahl [Int. J. Quantum Chem. 13, 697 (1978)] and extend the well-known three-index diagonal conditions also known ...

متن کامل

Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem.

Universal variational functionals of densities, first-order density matrices, and natural spin-orbitals are explicitly displayed for variational calculations of ground states of interacting electrons in atoms, molecules, and solids. In all cases, the functionals search for constrained minima. In particular, following Percus [Formula: see text] is identified as the universal functional of Hohenb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 105 21  شماره 

صفحات  -

تاریخ انتشار 2010